Kidney Transplantation: Focus on Pharmacotherapy

Brenna Kane, Pharm.D., BCPS
Clinical Pharmacy Specialist-Organ Transplantation
University of Chicago Medicine

Objectives

- Review immunosuppressive medications used in kidney transplantation
- Examine adverse effects, drug interactions, and monitoring parameters of these agents
- Interpret therapeutic drug monitoring for immunosuppressants
- Present "clinical pearls" related to medication usage in kidney transplant patients

IMMUNOSUPPRESSION

Goals of Immunosuppression

Complications of Immunosuppression

- Infection
- Malignancy
 - Post-transplant lymphoproliferative disorder (PTLD)
 - Skin cancers
- Drug-specific adverse effects

Phases of Immunosuppression

Disclaimer: Gray Areas

- Immunosuppressive protocols are:
 - Organ-specific
 - Eg. Induction therapy is frequently used in kidney transplant but rarely in liver transplant
 - Center-specific
 - Eg. The regimens used for kidney transplant recipients at UCM may be different from those used at Northwestern and Rush
 - Patient-specific
 - Eg. If a patient develops neurotoxicity as a result of tacrolimus, may consider conversion to cyclosporine

Pharmacology of Immunosuppression

INDUCTION

Induction

- Initiated prior to or at the time of transplantation
- Results in rapid and prolonged immunosuppression
- Goal is prevention of acute rejection in the early post-transplant period
- Use varies by transplant type and center

Agents Used in Induction

- Non-T-cell depleting
 - Interleukin-2 (IL-2) receptor antagonists
 - Basiliximab (Simulect®)
 - Daclizumab (Zenapax®)*
- T-cell depleting
 - Antithymocyte globulin
 - Rabbit (RATG, Thymoglobulin®)
 - Equine (ATG, ATGAM®)
 - Alemtuzumab (Campath®)
 - Muromomab (OKT3)*

^{*}No longer commercially available

Basiliximab (Simulect®)

- Induction agent
- Mechanism of action: IL-2 receptor (CD25) antagonist
- Dose: 20 mg IV intraoperatively and day 4 posttransplant
 - Reduce dose to 10 mg if patient weighs <35 kg</p>
- Adverse effects: minimal-similar to placebo

Antithymocyte Globulin

- Used for induction and treatment of rejection
- RATG more frequently selected than ATG
- Induction dose (RATG): 1.5 mg/kg IV for 3 to 7 doses
 - Usually given via a central line over 4 to 6 hours
 - Premedicate with APAP, diphenhydramine, and steroids
- Confirm that patient does not have a rabbit allergy
- Adverse effects: infusion-related reactions, leukopenia, thrombocytopenia, infection, malignancy risk
 - Dose adjustments may be needed for leukopenia/thrombocytopenia

RATG Infusion Reactions

- Symptoms: Fever, chills, labile blood pressure, muscle aches
 - Slowing infusion rate may alleviate minor reactions
 - For severe reactions: stop infusion and consider alternate therapies
- Monitoring: Vitals every 15 minutes for first hour of infusion then hourly thereafter

MAINTENANCE IMMUNOSUPPRESSION

Classes of Maintenance Immunosuppressants

- Calcineurin inhibitors (CNIs)
- Antiproliferatives
- Corticosteroids
- mTOR (signal proliferation) inhibitors
- Co-stimulation blocker

Maintenance Immunosuppression

- Typically consists of two to three medications from different classes
 - CNI + antiproliferative +/- steroids
 - mTOR inhibitor + CNI + steroids
 - mTOR inhibitor + antiproliferative + steroids
 - Co-stimulation blocker + antiproliferative + steroids
- Regimen may be minimized over time
- Note that immunosuppressants are frequently used off-label

Calcineurin Inhibitors (CNIs)

- Cyclosporine (CSA)
- Tacrolimus (TAC, AKA: FK506)
- Mechanism of action: Decrease production of interleukin (IL)-2 and other cytokines to inhibit T cell proliferation
 - Cyclosporine binds to cyclophilin
 - Tacrolimus binds to FK-binding protein
- Pharmacokinetics: CYP3A4 and P-glycoprotein substrates (=LOTS of drug interactions)

Tacrolimus (Prograf®, Envarsus XR®, Astagraf XL®)

- Most commonly used CNI
 - Considered more potent than CSA and has largely replaced it in the market

Usual dose

- Initial: Patient-specific, typical starting dose is 0.05 mg/kg PO every 12 hours (immediate-release tacrolimus)
- May delay initiation in the short term post-transplant
- Titrated to desired goal trough range (eg. 4-12 ng/mL)

Routes of administration

- PO: capsules (Prograf/Astagraf 0.5 mg, 1 mg, 5 mg capsules, Envarsus 0.75 mg, 1 mg, 4 mg tablets), suspension (compounded)
- Sublingual: open capsules and sprinkle contents under tongue
- ► IV: AVOID if possible

Tacrolimus

- Adverse effects
 - Nephrotoxicity
 - Electrolyte abnormalities (hyperkalemia, hypomagnesemia)
 - Hypertension
 - Hyperlipidemia
 - Post-transplant diabetes
 - Neurotoxicity
 - Alopecia

Cyclosporine (CSA)

- First CNI developed
- Usual dose
 - Initial: patient-specific, typically ~3 mg/kg PO every 12 hours
 - May delay initiation in the short term post-transplant
 - Adjusted to achieve desired goal trough range (eg. 100-300 ng/mL)
- Routes of Administration
 - PO: capsules (25 mg, 100 mg), solution
 - IV: AVOID if possible

Cyclosporine

- Adverse effects
 - Nephrotoxicity
 - Electrolyte abnormalities (hyperkalemia, hypomagnesemia)
 - Hypertension
 - Hyperlipidemia
 - Post-transplant diabetes
 - Neurotoxicity
 - ▶ Hirsutism
 - Gingival hyperplasia

Cyclosporine Products

- Cyclosporine (Non-Modified)
 - Sandimmune[®]
 - Cyclosporine USP
- Cyclosporine Modified
 - Neoral[®]
 - Gengraf® (branded generic)
 - Cyclosporine Modified USP

► REMEMBER:

- Sandimmune® ≠ Neoral®
- Cyclosporine ≠ Cyclosporine Modified

CNIs: CYP3A4 and P-glycoprotein Drug Interactions

Drugs that <u>DECREASE</u> blood levels of CNIs	Drugs that <u>INCREASE</u> blood levels of CNIs
Anticonvulsants: Carbamazepine Phenobarbital Phenytoin	Calcium Channel Blockers: Diltiazem Verapamil
Antimicrobials: Rifabutin Rifampin	Antifungals: Voriconazole Posaconazole Itraconazole Ketoconazole Fluconazole
Herbals: St. John's Wort	Macrolides: Clarithromycin Erythromycin
Antiretrovirals: Efavirenz	Others: Amiodarone Protease inhibitors

CNIs: Interactions

- Drug-Disease State Interactions
 - QTc prolongation (especially with TAC)
 - Diarrhea (increases TAC exposure)
 - Liver dysfunction
- Drug-Food Interactions
 - Grapefruit and grapefruit juice (CYP3A4 inhibitor)

CNI-Induced Nephrotoxicity

- Acute
 - Hemodynamically-mediated nephropathy
 - Often exposure-dependent
 - ▶ Signs and symptoms include ↑SCr, ↑ BP, ↑ K-may resemble acute rejection
- Chronic
 - May result in irreversible kidney damage

CNIs-Therapeutic Drug Monitoring (TDM)

- Important for evaluating efficacy and toxicity
- ▶ 12 hour trough levels are use for immediate-release TAC and CSA, 24 hour troughs for extended-release TAC
- Half-life
 - Tacrolimus ~11 hours
 - Cyclosporine ~19 hours
- Time to achieve steady state ~3-5 half-lives

CNIs-Therapeutic Drug Monitoring (TDM)

- When assessing levels, the following should be taken into consideration:
 - Is it a "true" trough?
 - Goal range (may be per protocol or patient-specific)
 - Serum creatinine trend
 - Previous drug levels (does this level "make sense?")
 - CNI dose
 - Concomitant medications
 - Prescription, OTC, and herbals
 - New/recently discontinued medications
 - Any complaints of side effects? Evidence of graft dysfunction?
 - Other factors: adherence, diarrhea, drug-food interactions

Antiproliferatives

- Mycophenolate products
 - Mycophenolate mofetil (Cellcept®)
 - Mycophenolate sodium (Myfortic®)
- Azathioprine (Imuran®)
 - Largely replaced by mycophenolate
 - May still be preferred agent in select situations
 - GI intolerance to mycophenolate
 - Females who are trying to get pregnant

Mycophenolate Products

- Mycophenolate mofetil (MMF)
 - Brand name: Cellcept[®]
- Mycophenolate sodium (EC-MPS)
 - Brand name: Myfortic[®]
- Mechanism of action: Depletes guanosine halting progression of activated T and B lymphocytes during S phase

MPA Metabolism

Mycophenolate Mofetil (Cellcept®)

- Usual dose: 1000 mg PO twice daily
- Adverse effects: GI problems (diarrhea, nausea, vomiting, abdominal pain), leukopenia
- Drug interactions
 - Divalent/trivalent cations (Ca, Mg, Iron)
 - CSA (decreased AUC)
 - Bile acid sequestrants (decreased AUC)
- Routes of administration
 - PO: capsules (250 mg), tablets (500 mg), suspension
 - IV: Note that PO:IV conversion is 1:1

Mycophenolate Sodium (Myfortic®)

- Enteric-coated formulation
 - Proposed benefit is reduced incidence of GI toxicity
- Usual dose: 720 mg PO BID
 - Available as 180 and 360 mg tablets
- Conversions between products
 - MMF:EC-MPS
 - ▶ Eg. Cellcept® 1000 mg PO BID=Myfortic® 720 mg PO BID

CSA/MPA Drug Interaction

Effect of EHC/CSA on MPA

Mycophenolate Products: TDM

- Controversial-dose adjustments typically related to patient's ability to tolerate medications
 - ▶ 12-hour trough levels
 - May relate to toxicity and adherence
 - Mini-AUC
 - May relate to efficacy
 - If on tacrolimus:
 - □ MPA trough level, 30 minutes, and 2 hours post-dose
 - If cyclosporine:
 - □ MPA trough level, 2 hours, 3 hours, and 4 hours post-dose
 - Cannot be performed accurately if patient on mycophenolate sodium due to delayed drug release

Mycophenolate REMS

- Education for women of child-bearing potential and their providers
- Encourages appropriate forms of birth control
- Reporting pregnancies that occur to national registry

Azathioprine (Imuran®)

- Mechanism of action: Inhibits inosinic acid monophosphate dehydrogenase (IMPDH) and therefore DNA replication in rapidly dividing cells
- Usual dose
 - ▶ 1-2 mg/kg/day common maintenance dose
- Adverse effects: myelosuppression, hepatitis, cholestasis, pancreatitis

Azathioprine (Imuran®)

- Drug interactions: xanthine oxidase inhibitors, warfarin (decreases its anticoagulant effect)
- Routes of administration:
 - PO: tablets (50 mg)
 - IV: currently on drug shortage
- TDM
 - No routine drug level monitoring, consider checking 6-thioguanine levels if concerns about toxicity

Azathioprine-Xanthine Oxidase Inhibitors

- Avoid concomitant use with allopurinol and febuxostat
 - Xanthine oxidase is responsible for metabolism of azathioprine->inhibition of this enzyme->increased exposure to 6-MP->hematologic toxicity
 - Consider switch to alternative antiproliferative agent if xanthine oxidase inhibitor absolutely necessary

Leflunomide (Arava®)

- May be selected as a replacement antiproliferative in patients with concomitant viral infections (eg. BK, CMV)
- Typical dose: 40 mg PO daily (our practice is to avoid load due to tolerability issues), does have extremely long half-life
- Adverse effects: rash, hepatoxicity, neuropathy
- Teratogenic

Corticosteroids

- Prednisone (PO) or methylprednisolone (IV)
- Mechanisms of action: Prevent the expression of genes encoding cytokines, inhibit production of IL-2
- Usual dose and/or use varies by transplant center protocol
 - Steroid avoidance, rapid taper, and minimization protocols may be utilized

Corticosteroids

 Steroids (if used) are generally tapered over a period of weeks, most patients ultimately end up on ~5 mg/day

- Oral to IV conversion
 - Prednisone: Methylprednisolone ratio of 5:4
 - ▶ Prednisone 20 mg PO daily → Methylprednisolone 16 mg IV daily

- Mechanism of action: Inhibits mammalian target of rapamycin (mTOR) – blocking intracellular signals past IL-2 receptor
- Initially studied for use with CSA in kidney transplant
 - Now often utilized in place of a CNI or antiproliferative

- Usual dose
 - ▶ 1-5 mg PO daily
 - Avoid "loading" doses due to tolerability
- Drug interactions
 - CYP3A4
 - Administer at least 4 hours after CSA if used together

- Adverse effects:
 - Hyperlipidemia
 - Leukopenia
 - Thrombocytopenia
 - Edema
 - Proteinuria
 - Interstitial pneumonitis
 - Mouth ulcers
 - Delayed wound healing

- Role in transplant
 - Infrequently used immediately post-transplant due to wound healing complications
 - "Renal sparing" protocols
 - Beneficial in patients with malignancies (specifically skin cancers)

Everolimus (Zortress®)

- Initial dose: 0.75 mg PO twice daily
- Adverse effects: similar to sirolimus
- Drug interactions: similar to sirolimus, exceptiondoes not need to be separated by 4 hours from CSA

mTOR Inhibitors: TDM

Sirolimus

- 24 hour trough
- Goal range varies, typically 4-7 ng/mL
- Note long half life (57-63 hours)->takes significant time to reach steady state

Everolimus

- 12 hour trough
- Goal range=3-8 ng/mL
- Half-life=30 hours

Belatacept (Nulojix®)

- Mechanism of action: selective T cell co-stimulation blocker
- First IV-only agent for maintenance immunosuppression
- Approved for use in kidney transplant in combination with mycophenolate, corticosteroids, and basiliximab induction

Belatacept (Nulojix®)

- Dose: fixed dose based on weight
 - Initial immunosuppression: 10 mg/kg IV on POD 0, POD 4, end of week 2, week 4, week 8, and week 12, 5 mg/kg IV end of week 16, and monthly thereafter
 - Conversion: 5 mg/kg IV every 2 weeks for 5 doses, then every 4 weeks thereafter
- Administration: IVPB over 30 minutes, can be given peripherally
- Common adverse effects: anemia, diarrhea, UTI, peripheral edema

Belatacept: Black Box Warnings

- Post-transplant lymphoproliferative disorder (PTLD)
 - Use limited to Epstein-Barr virus (EBV) positive recipients only
- Progressive multifocal leukoencephalopathy (PML)
- Requires registration for drug access via Nulojix Distribution Program

Belatacept (Nulojix®)

- Potential role in transplant
 - Not nephrotoxic
 - Decreased cardiovascular and metabolic side effects compared to CNIs
 - IV-only administration allows for direct assessment of compliance
 - Doesn't require drug level monitoring
 - No known drug interactions

TRANSPLANT PHARMACY CLINICAL PEARLS

Pharmacokinetic Drug Interactions-Management

- For the majority of medications, CNI/mTOR inhibitor doses are not empirically reduced, rather tend to follow drug levels and adjust as necessary
 - Depends on patient's clinical status and history
- If an interacting medication is started or stopped, recommend checking trough levels
- When in doubt, look it up or consult a transplant pharmacist!

Pharmacokinetic Drug Interactions

- CYP 450 enzyme INDUCERS
- Increase drug metabolism, potentially resulting in decreased efficacy
- Examples:
 - Anti-epileptics (eg. phenytoin, carbamazepine)
 - Antibiotics (eg. rifampin)
 - Antiretrovirals (eg. efavirenz)
 - Herbals (eg. St. John's wort)

Pharmacokinetic Drug Interactions

- CYP 450 enzyme INHIBITORS
- Decrease drug metabolism, potentially resulting in toxicity
- Examples:
 - Antifungals: azoles
 - Antibiotics: macrolides
 - Antiretrovirals: protease inhibitors
 - Hepatitis C medications: telaprevir, boceprevir
 - Cardiac meds: eg. verapamil, diltiazem, amiodarone

Pharmacodynamic Drug Interactions

ACE inhibitors/ARBs

NSAIDs

Nephrotoxic drugs (additive toxicity)

Myelosuppressive drugs (additive toxicity)

FAQ:

AM meds "held for dialysis"

Pearl: Dialysis and Immunosuppressants

Induction:

- OK to hold if needed
- Not removed by dialysis, but ideal to avoid problem of differentiating Thymo infusion-related reaction from dialysis tolerance

Maintenance:

- Do <u>NOT</u> hold tacrolimus, cyclosporine, mycophenolate, everolimus, sirolimus, steroids
- DO hold azathioprine until after HD
- DO hold meds for infectious ppx until after HD

FAQ:

Can I give Thymoglobulin through a peripheral line?

Pearl:

Peripheral Thymoglobulin

- Doses prepared for central administration (eg. 0.5 mg/mL concentration) CANNOT be given through a peripheral line
- For peripheral administration, doses must be:
 - 1. Diluted to a max of 0.25 mg/ml (not 0.5 mg/mL) AND
 - Infused over at least 12 hours (not 6 hours)
- Phlebitis and thrombophlebitis are concerns! If this occurs, stop the infusion and contact the transplant pharmacist to arrange a bag with heparin and hydrocortisone mixed in.

FAQ:

My patient can't swallow. Can I crush or dissolve his meds? Change to IV?

	РО	NG	SL	IV
Tacrolimus	V	✓ Must use liquid	Use capsules PO:SL 1:0.5-1	Possible but NG preferred PO:IV 5:1
Tacrolimus, extended release	Envarsus XR on formulary, Astagraf XL removed from formulary	No; consider tacrolimus	No; consider tacrolimus	No; consider tacrolimus
Cyclosporine, modified	•	✓ Must use liquid	No	No; use cyclosporine, nonmodified
Cyclosporine, nonmodified	Nonformulary; use patient's own or cyclosporine modified	Nonformulary; use patient's own or cyclosporine modified Must use liquid	No	Possible but NG preferred PO:IV 3:1
Mycophenolate mofetil (MMF)	V	✓ Must use liquid	No	PO:IV 1:1
Mycophenolic acid (MPA)	V	No; change to MMF MPA:MMF 720:1000	No	No; change to MMF MPA:MMF 720:1000
Azathioprine (AZA)	V	Crush tablets	No	IV affected by shortage; consider MMF
Sirolimus	V	✓ Must use liquid	No	No
Everolimus	~	No	No	No
Prednisone	V	Crush tablets	No	use methylpred pred:methylpred 5:4

Kidney Transplantation: Focus on Pharmacotherapy

Brenna Kane, Pharm.D., BCPS
Clinical Pharmacy Specialist-Organ Transplantation
UChicago Medicine
Brenna.Kane@uchospitals.edu

