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T regulatory cells (Tregs) play a critical role in the immunologic tolerance to the graft in transplantation.
Thus, due to their immunosuppressive capability, ex vivo expanded Tregs may be used as a cellular therapy
and an attractive novel strategy to control chronic rejection and eliminate need for lifelong pharmacological
immunosuppression. Since Treg therapy is still in its infancy, initially Tregs still need to be applied in combi-
nation with pharmacological agents to prevent rejection. Fortunately, some of the medications have been
shown to enhance the function and number of Tregs. In the clinic, different immunosuppressive regimens
are used for individual patients for different types of organ transplantation. In this review, we present the
most commonly used pharmacological agents for immunosuppression and discuss how they affect the Treg
population. It is extremely difficult to dissect the effect of single agent on Tregs population in clinical settings
since usually the combination of several medications is applied at the same time for graft protection. Never-
theless, experimental and clinical data indicate that thymoglobulin as immunosuppressive induction and
mTOR inhibitors as immunosuppressive maintenance agents have the most beneficial effect on Treg popula-
tion in the blood. Among supplemental agents promoting Tregs, anti-TNFα preparations have been in clinical
use (in autoimmune diseases) for many years, so they are optimal candidates for testing in transplant set-
tings in combination with Treg based cellular therapy.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

CD4+CD25highFoxP3+ regulatory T cells (Tregs) act to counterbalance
T effector cell activity for immunehomeostasis. Function or dysfunction of
Tregs plays critical roles in autoimmune disease, cancer, transplantation,
allergy, and inflammation. One of the important functions of Tregs is the
immunosuppressive regulation of auto-reactive T cells. Naturally occur-
ring Tregs (nTregs), like all other T cells, undergo lineage commitment
and maturation in thymus, after which they constitute only 5–10% of
CD4+ T cells in the blood [1]. Inducible Tregs (iTregs) are derived from
naive CD4+ cells in the periphery.

In the field of organ transplantation, chronic rejection and adverse
effects of pharmacological immunosuppression are still a major obstacle

to overcome. Thus, due to their immunosuppressive capability, ex vivo ex-
pandedTregsmaybeused as a cellular therapy and are an attractive novel
strategy to control chronic rejection and minimize the use of pharmaco-
logical agents in maintenance of immunosuppression. Indeed, recently
more studies have shown it as a feasible, alternative therapeutic ap-
proach. Tregs can physiologically inhibit effector T cells without toxicity
and have a lower risk of side effects than immunosuppressive drugs. Fur-
thermore, Tregs may be able to induce long-term immune tolerance [2].

Since Treg therapy is still in its infancy, initially Tregs need to be
applied in combination with pharmacological agents to prevent
rejection. Fortunately, some of medications have been shown to
enhance the function and number of Tregs. In the clinic, different
immunosuppressive regimens are used for individual patients for
different types of organ transplantation. In this review, we present the
most commonly used pharmacological agents for immunosuppression
and discuss how they affect the Treg population. For the purposes
of this discussion, we have presented these agents in three groups:
(1) induction of immunosuppression; (2) anti-inflammatory agents;
and (3) maintenance of immunosuppression.
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2. Induction of immunosuppression

2.1. Anti-thymocyte globulin

Anti-thymocyte globulin (ATG) has been the most widely used
lymphocyte-depleting preparation in solid organ transplantation for
more than 25 years. It targets T cell surface antigens leading to long-
lasting T cell depletion. Although it has been registered with the FDA
as an agent to treat acute rejection, it is commonly used in the induction
of immunosuppression for the prevention of graft rejection [3].

It was shown in animal studies that Tregs were susceptible to
cell depletion caused by ATG. However, as compared to conventional
T cells, CD4+FoxP3+ Treg cells were found to be more resistant to
mouse ATG treatment, resulting in the Treg/Teff ratio increasing by
approximately two-fold in lymph nodes, spleen, and peripheral blood
after treatment with ATG [4]. This may be a consequence of higher
expression of anti-apoptotic gene Bcl-XL, which is higher in FoxP3+

cells independent of CD25 expression [5]. This was even more pro-
nounced, when ATG was followed by Sirolimus (SRL) and CTLA4-Ig
[6]. Similar increase in the percentage of Tregs was achieved also with
TGFβ1 in mice model [7].

Additionally, in vitro studies with thymoglobulin also confirmed
that observation: Tregs are more resistant to depletion than T effector
cells. After four day in vitro incubation, Tregs/Teff ratio increased due
to 4-fold increase in the percentage of CD4+CD25highFoxP3+Tregs [8].
In similar experiment, the same ATG effect was observed only after
prolonged exposure of the cells to the agent. While a 6-hour incubation
with rabbit ATG did not affect the number and function of Tregs [9], the
longer exposure (24 h) induced more Tregs with the suppressive func-
tion and up-regulated FoxP3 expression [10,11]. Interestingly, there is
evidence that in vitro administered ATG can convert CD4+CD25− T
cells into CD4+CD25+FoxP3+ T cells [12].

In the clinic, the recovery of Tregs after ATG related depletion
was found more vigorous than T effector cells. By day 90 after renal
transplant, the Treg number in ATG-treated patients reached 47% of
pre-transplant levels increasing relative Treg/Teff ratio [13]. Kidney
recipients who received rabbit ATG (rATG) followed by belatacept/SRL
were characterized by having higher number of FoxP3+ Tregs in the
blood and enhanced suppressive Treg function as compared to treat-
ment with other immunosuppressive agents one year after the trans-
plant [14]. Interestingly, transplant recipients treated with this ATG
protocol possessed higher percentage of CD4+CD25+FoxP3+ Treg
cells than healthy controls, 10.0% versus 6.9%, respectively [15].

Similar results could be found looking at new described Treg
markers. ATG may deplete all the T cells but preferentially spare
CD4+FoxP3+Helios+ cells, leading to a higher Treg/Teff ratio during
immune recovery [16,17].

Altogether, in themajority of experimental and clinical studies, ATG
depleted all T cells, however increased Treg/Teff ratio due to preferen-
tial sparing of Treg cells.

2.2. Anti-CD52 antibody (alemtuzumab)

The anti-CD52monoclonal antibody alemtuzumab, which is known
as Campath-1H,was approved in 2001 for the treatment of hematologic
malignancies and has been used in many transplant studies since then
[18]. Alemtuzumab targets CD52, a protein expressed on the surface of
mature lymphocytes depleting T cells, B cells, monocytes and dendritic
cells, therefore it is used as an alternative to ATG for induction therapy
in solid organ transplantations. However, alemtuzumab causes more
profound and longer lasting blood cell depletion than ATG [19] and the
effect is immediate after application. In vitro, all T cells, including CD4+

CD25+ cells, were completely depleted only 4 h after Campath-1H
exposure [20].

Therefore, in patients, alemtuzumab also induces a profound
and unselective depletion of CD4+ T cells, including Tregs [21]. We

found in our previous study involving Campath-1H, that after an ini-
tial blood count drop, Treg recovery was much slower than other
T cell populations [22]. On one hand, it could have been related to
the relative resistance of Tregs to homeostatic proliferation, as Tregs
do not express receptors for homeostatic cytokines [23]. Low levels of
Tregs after profound cell depletion related to alemtuzumab might also
be responsible for vigorous homeostatic proliferation of non-regulatory
T cells, which is the process normally limited by Tregs and encouraged
by Treg deficiency [24].

On the other hand, in this particular study, besides Campath-1H,
one of the calcineurin inhibitors (CNI) was also used for the main-
tenance immunosuppression; therefore, slow recovery of Tregs might
have been related directly to the effect of this agent or both [22] (see
Calcineurin inhibitors (CNI) section below). The latter might be more
likely since the results of other studies suggest that alemtuzumab
spares Tregs similarly to ATG. In vitro stimulation of PBMCs and expo-
sure to alemtuzumab led to an increased ratio of Treg/Teff due to the
relative resistance of CD4+CD25+FoxP3+ cells to depletion [25]. This
effect was confirmed in patients. The frequency of CD4+CD25+FoxP3+

Treg cells increased for up to 90 days in hematopoietic stem cell
transplantation patients as well as in IPEX syndrome patients after
alemtuzumab treatment [26–28]. In renal transplantation in adults,
alemtuzumabwas able to increase the percentage of CD4+CD25+FoxP3+

Tregs to 20% of all CD4+ T cells 3 months post-transplant [29]. This
is of special importance, as the recovery of total CD4+ T cells after
depletion is usually delayed and the total number of these cells
may be decreased for years after administration of alemtuzumab
[25,30]. In pediatric kidney transplants, alemtuzumab also selectively
spared CD4+CD25+FoxP3+ regulatory T cells. In this steroid-free,
CNI-withdrawal protocol the ratio of Treg/Teff increased significantly
from baseline to 3 months post-transplant and returned to baseline
between 6 and 12 months [31]. As was the case with ATG, the in-
crease in the percentage of Tregs after alemtuzumab can be further
enhanced, when sirolimus is included in the immunosuppressive
regimen [21,22].

Similarly to ATG, alemtuzumab selects for Treg cells at the expense
of conventional CD4+ T cells and allows for the preservation of their
immunosuppressive function both in vitro and in vivo [32]. Although
alemtuzumab antibody decreases total numbers of all T cells, the reduc-
tion in Tregs is far less, resulting in the proportion of Tregs of total
CD4+ cells increasing or at least being maintained after the treatment.
However, Alemtuzumab seems to promote Tregs to a lower extent,
when compared with ATG [12].

2.3. Anti-CD3 antibody

Anti-CD3 antibody binds to the CD3 receptor on the surface of
T cells, and is commonly used in clinical depletion strategies [33].
The use of anti-CD3 antibody is considered as an alternative to ATG
and alemtuzumab, and is employed less often, usually as a last resort
for resistant acute rejection of the graft or as induction therapy [34].
Since, the effect is limited to T cells, this compound is used less often
than ATG and Campath-1H in transplantation, but at the same time,
it could be used to treat T cell-mediated autoimmunity, like type 1
diabetes (T1D). Similar to ATG and alemtuzumab, anti-CD3 not only
depletes but also changes the proportion and activity of the remaining
T cells. An experimental autoimmune uveitis mouse model demon-
strated that giving anti-CD3 antibodies resulted in an increase in the
percentage of regulatory T cells and enhanced the activity of antigen-
specific regulatory T cells at day 14th and 30th, whereas the number
of autoreactive T cells was selectively reduced [35]. In collagen-
induced arthritis, anti-CD3 mAb therapy increased the percentage of
CD4+CD25+FoxP3+ cells resulting in reduced disease activity [36].
Transient systemic rise in the percentage, but not absolute number of
CD4+FoxP3+ Tregs, was observed particularly in the subset of Helios
positive Tregs; this was due to a selective depletion of CD4+FoxP3−
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conventional T cells in vivo, an effect thatwas also noted in other studies
[37]. In addition, anti-CD3 mAbs increased CD4+CD25+FoxP3+ levels
in diabetes and the effect could be enhanced by the addition of nasal
proinsulin [38]. These tolerogenic properties encouraged diabetologists
to conduct the PROTÉGÉ Study and administer an anti-CD3 preparation
of teplizumab to treat recent onset of type 1 diabetes in humans. Unfor-
tunately, the studywas discontinued in phase III since the primary effica-
cy end-point was not met after the first year [39]. Anti-CD3mAb has also
been used to treat cGVHD-induced lupus nephritis; again, the recovery
was associated with an up-regulation of FoxP3 mRNA expression and a
down-regulation of effector T cell-related genes in the kidney [40].

2.4. Anti-CD25 (IL-2r) antibody

The interleukin-2 receptor α chain (IL-2Rα, CD25) plays a major
role in shaping the dynamics of T cell populations following immune
activation [41]. Basiliximab (Simulect, Novartis, USA) and daclizumab
are the two antibody-based drugs that directly target the alpha-chain
of IL-2R, and have been successfully applied in the clinic to reduce the
incidence of acute graft rejection.

Anti-CD25 antibody can reduce almost all CD4+CD25high cells and
has less effect on CD4+CD25low cells even at low doses, which has
been observed in both in vitro and in vivo studies [42,43]. In the circu-
lation, a transient loss of both FoxP3+CD25+ and FoxP3−CD25+

T cells was found and the total number of FoxP3+ cells was reduced
[44,45]. This raises important questions about the use of this therapy
in tolerance-promoting therapeutic protocols. Even more, this anti-
body has been used for Treg depletion in anti-cancer therapies, where
a high level of Tregs was responsible for tumor progression [46]. This
observation was mainly made for daclizumab, administration of which
led to a marked decrease in number and frequency of CD4+CD25+

cells in vitro [47] as well as in metastatic melanoma patients [48–50].
Daclizumab administration depleted Tregs and increased the effector
T cell to Treg ratio [41,50–52]. However, researchers also found that
the percentage of CD4+FoxP3+ Tregs and the FoxP3 mRNA expression
in PBMCs were not significantly reduced, even though the percentage
of CD4+CD25+ T cells was decreased in the short term after administra-
tion of anti-CD25 antibodies [42,43,53]. A similar effect was noted in
human transplantation studies, in which induction with basiliximab
did not change the proportion of FoxP3+ cells among total CD4+ T
cells nor did it change the level of FoxP3 expression. At the same time,
the proportion of CD25+FoxP3+ cells decreased and the proportion of
CD25−FoxP3+ cells increased [54–56]. It might be possible that this is
an artifact and in all of those studies, anti-CD25 antibody was simply
masking the CD25 receptor by binding to it and FoxP3+ cells were false-
ly assessed as CD25 negative [57]. Nevertheless, there are reports with
confirmed reduction of Treg cells after anti-CD25 treatment. Induction
therapy with basiliximab in combination with a CsA for maintenance
of immunosuppression reduced the amount of circulating regulatory
CD4+CD25highFoxP3+ T cells in kidney transplant recipients in the
long-term follow up [25,58]. On the other hand, graft biopsies showed
that basiliximab therapy leads to high expression of FoxP3 locally in the
graft after kidney transplantation [59]. There are also reports that the
addition of ATG to anti-CD25 induction treatment leads to an increase
in systemic levels of FoxP3+ Tregs post-transplant [57].

3. Anti-inflammatory agents

3.1. Anti-TNFα antibodies

Tumor necrosis factor-alpha (TNFα) is a cytokine associated with
systemic inflammation and immune response [60]. It has been shown
that TNFα can up-regulate CD25 leading to enhanced IL-2 stimulated
phosphorylation of STAT5 and subsequent up-regulation of FoxP3
[61]. Adding 10 ng/mL TNFα to a 72-hour in vitro culture of mouse
CD4+ cells increased (4-fold) the percentage of cells expressing FoxP3

as well as enhanced the suppressive function of Tregs [62]. Another in
vitro study using human cells revealed that 50 ng/mL TNFα inhibited
the number and function of Tregs [63]. This discrepancy may be partly
ascribable to differences in the TNFα dosages used and insufficient
attention to the possible effects of TNFα on T effectors, and the fact
that the cells came from different species.

Another reason might be that TNFα is required only for the devel-
opment of nTregs but not for iTregs [64]. This could explain the ther-
apeutic efficiency of anti-TNFα in the clinic. Therapy with anti-TNFα
antibody increases the number (2–3 fold) of FoxP3+ Tregs (including
CD4+CD25+FoxP3+ and CD4+CD25−FoxP3+) in peripheral blood
enhancing their function (tested in vitro) in patients with inflamma-
tory bowel disease [65,61]. Treating rheumatoid arthritis patients
with anti-TNFα led to a reduction of Teff cells and an enrichment of
Tregs, leading to a higher Treg/Teff ratio in the blood even at 24 weeks
post-agent application [66,67]. In active chronic uveitis patients, the
level of CD4+CD25highFoxP3+ Treg cells increased in the first 3 months
after initiation of the treatmentwith anti-TNFαpreparation, adalimumab
[68]. In ankylosing spondylitis anti-TNFα decreased the levels of Th17
cells and related cytokines and increased the Treg/TGFβ axis [69]. In-
creased expression of type 1 TNFα receptors on Tregs was found in
type 1 diabetic children. This was associated with impaired function of
Tregs in vitro and could be reversed by addition of an anti-TNFα prepara-
tion infliximab to the culture [70]. It seems that anti-TNFα antibodymay
cause a redistribution of Tregs from tissue to blood and directly boost the
suppressive function of these cells [61]. Anti-TNFα agents have been test-
ed effectively in inflammatory bowel disease. Twoweeks after treatment,
the number of circulating Tregs increased twice with a 2–3 fold increase
in FoxP3 expression and a 2 fold enhancement in their suppressive func-
tion [61]. Interestingly, clinical responders to therapy with anti-TNF
agents had durable clinical remission with sustained increases in the
number of circulating FoxP3 positive cells [65].

3.2. IL-1 inhibitor

Anakinra, a human recombinant IL-1 receptor antagonist, is approved
for the treatment of autoimmune and inflammatory conditions such
as rheumatoid arthritis [71], Schnitzler's syndrome [72], and other
inflammations. After receiving anakinra, the percentages of Th17 cells
and Th1 cells were lower and the percentage of Treg cells was higher
by 24 weeks [73].

4. Maintenance of immunosuppression

4.1. Calcineurin inhibitors (CNI)

Cyclosporin A and tacrolimus (TAC) are immunosuppressants that
act by inhibiting calcineurin, a phosphatase 3 protein, which activates
T cells. Calcineurin inhibitors (CNI) are used as immunosuppressive
therapy in solid organ transplantation and other immune diseases
[74]. In general, CNIs reduce the number of Tregs. For example, de-
creased number of CD4+CD25highFoxP3+ Tregs was found in renal
and liver graft patients [22,75,76]. However, no direct relationship
between FoxP3 expression and CNI has been established. What is
more, the use of TAC monotherapy did not influence FoxP3 expres-
sion, neither at the mRNA nor the protein level [75]. When dermatitis
patients were given TAC, the number of CD25+ cells was reduced, but
the number of FoxP3+ cells was not altered [77].

4.1.1. Cyclosporine A
Cyclosporine A (CsA) has been shown to suppress the induction of

CD4+CD25+ Tregs but enhances Treg function in in vitro MLR experi-
ments [78]. After giving CsA to healthy mice, the number of Tregs was
reduced, and the development and function of CD4+CD25+ Treg cells
were impaired [79]. Both low and high doses of CsA inhibited the prolif-
eration of Tregs, but only a low dose CsA impaired the suppressive
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function [80]. In mice, CsA didn't change FoxP3 expression but caused
lower FoxP3/IL17a ratio because of a selective sparing of Th17 cells [81].

4.1.2. Tacrolimus
Tacrolimus (TAC), known also as FK506, is a calcineurin inhibitor

first approved for liver transplant in 1994. Like CsA, TAC decreases
Treg proliferation in vitro [82,83]. In a model of rat liver transplant, ta-
crolimus also reduced Treg number [84]. In the human setting in vivo,
an association between low number of Tregs and TAC maintenance
was described in kidney transplant recipients [22].

4.2. CTLA4-Ig

Cytotoxic T lymphocyte antigen 4 (CTLA4-Ig) is a CD80/CD86
antagonist which disrupts an important co-stimulatory signal passed
from APC to T cells after T cell receptor engagement consisting of an
interaction between CD80/86 and CD28 receptors [85]. CD28 signal-
ing in T-regulatory cells was shown to promote FoxP3+ T regulatory
cell generation from developing thymocytes [86]. CTLA4-Ig may in-
hibit the development and expansion of nTreg cells by impairing
the CD28 signaling pathway, although in short-term-treated patients
the expression of FoxP3+ cells in the tissues is higher compared with
CNI-treated patients [87]. Therapy with belatacept, an investigational
selective co-stimulation blocker, led to similar patient/graft 1-year
survival compared to cyclosporine; however, a higher graft rejection
ratewas observed in the BENEFIT study. Currently, it is the first biolog-
ical agent approved for the maintenance of immunosuppression after
kidney transplantation [88]. In contrast to CNI-based maintenance
immunosuppression, belatacept better preserves kidney graft function
(glomerular filtration rate) after first year and may reduce the rate
of chronic allograft nephropathy in the long-term [89,90]. A recent
study with abatacept – another form of CTLA4-Ig fusion protein –
has revealed in type 1 diabetes that the drug is able to preserve
pancreatic β-cell function and delay progression of the disease [91].

However, there is a rationale that CTLA4-Igmay have a counterpro-
ductive effect on Treg function and tolerance induction, since Tregs
rely upon CD28-dependent signals for development and peripheral
expansion. It was found in specific CTLA4 knockoutmice that the func-
tion of Tregs was lost, although the frequency of peripheral Tregs was
dramatically elevated [92]. Additionally, administration of CTLA4-Ig
significantly decreased the amount of thymus-derived natural Tregs
[93]. In a murine skin transplant model, IL-2 mediated Treg expansion
was inhibited by CTLA4-Ig because of the starvation of available B7
molecules [94]. Although graft biopsies in belatacept-treated kidney
recipients had a significantly greater number of FoxP3+ cells compared
with CNI-treated patients [87], it was not confirmedwhenmRNA levels
were measured. Twelve months after renal transplant, FoxP3 mRNA
level in graft biopsies was significantly lower in the belatacept group
than the CNI group [95]. Of note, other immunosuppressive agents
were used simultaneously (anti-metabolite); therefore, observed ef-
fects might be a result of combined actions, not purely the result of
CTLA4-Ig treatment.

4.3. Mycophenolate mofetil (MMF)

MMF is a reversible inhibitor of inosine monophosphate dehydro-
genase, an enzyme, which plays a crucial role in GTP biosynthesis [96].
It is widely used as an immunosuppressant in organ transplantation,
autoimmune diseases, and GVHD [97]. MMF specifically reduced the
percentage of FoxP3+ Tregs locally in the kidney in an ischemia-
reperfusion model [98]. Additionally, the number and percentage of
Ag-specific CD4+CD25+FoxP3+ Tregs were also decreased on day 7
in the draining lymph nodes and spleens after treatment with MMF
in the ovalbumin-immunized mice [99]. MMF can significantly de-
crease Treg numbers in a spontaneous hypertensive rat [100].

It is difficult to dissect the pure effect of MMF on Tregs in clinical
settings, since this compound is usually supplemental to induction
and other maintenance agents. In humans, basiliximab/belatacept/
MMF/steroid therapy reduced Treg numbers after renal transplant
for up to 1 year [14]. In liver graft recipients, where only CNI is used
in addition to MMF, not only the number but also the percentage of
Tregs was steadily reduced at 3 years post-transplant [30]. In lung
transplant patients treated with protocols containing MMF, the num-
ber of CD4+CD25high cells was not significantly reduced [101]. As
highlighted above, reduction of Tregs while using immunosuppressive
regimens containing MMF might be rather the results of the simulta-
neous actions of all agents used, and not specifically associated with
MMF. For example, in setting of allogenic bone marrow transplantation
or symptomatic carotid artery stenosis, MMF did not affect Treg
number, function, or FoxP3 expression in both in mice and in clinical
settings [102,103]. However, conversion from CNI to MMF due to
renal dysfunction was associated with an increase in the percentage of
Tregs in liver transplant patients when MMF was used as a single-agent
therapy [104].

4.4. Steroids

Glucocorticoids play an important role in the treatment and preven-
tion of organ rejection in transplant patients. Corticosteroids interact
with the intracellular receptor, the GC receptor (GR), a ligand-regulated
transcription factor that positively or negatively alters the transcription
of specific target genes, such as FoxP3 in Tregs [105]. In vitro, dexameth-
asone upregulated mRNA and FoxP3 expression in CD25− cells and
generated CD4+CD25+FoxP3+ Tregs; however, the immunosuppres-
sive function of those cells was not improved [106]. In mouse models,
multiple sclerosis or colitis treatment with steroids preserved both the
number and function of Tregs [107]. In human studies, steroids were
shown to preserve Tregs populations in chronic uveitis patients [68],
and even to increase the levels of CD4+CD25+FoxP3+ Tregs in asth-
matic children treated with inhaled glucocorticoids, when compared
to the controls and to the patients' own Treg levels prior to treatment
[108].

4.5. mTOR inhibitor

Sirolimus also known as rapamycin (Rapa) and its analog, everolimus,
are mammalian target of rapamycin (mTOR) inhibitors. mTORs display
immunosuppressive activity affecting mTOR kinase and arrest the cell
cycle in G1 phase, without inhibiting the production of IL-2, a cytokine
playing an important role in the generation and activity of Tregs [78].
They preferentially spare Tregs, while simultaneously inhibiting T effector
cells [109]. Although in in vitro MLRs Rapa slightly decreases the per-
centage of CD4+CD25high FoxP3+ T cells, it substantially enhances
their suppressive function when compared to control or assays treated
with CsA [78].

In human, the number of Tregs in peripheral blood increased sig-
nificantly in kidney transplant patients 6 months after switching to
monotherapy with rapamycin comparing to monotherapy with TAC
or MMF. Moreover, since numbers of antigen-specific Tregs increased
in blood as well, the potential for the regulation of donor-specific re-
sponses in lymphoid and peripheral tissues was enhanced too [110].
Long-term patients on Rapa had more circulating Tregs at 12 and
24 months after renal transplant in comparison to patients on CsA
[111]. Furthermore, patients with liver grafts treated with sirolimus
monotherapy had significantly higher percentages of CD4+CD25high

FoxP3+ T cells compared with non-sirolimus group, even 3 years after
transplantation [30]. After lymphocyte depletion by alemtuzumab or
ATG induction, sirolimus but not CsA or TAC, increased the pool of
FoxP3-expressing CD4+CD25high cells [16,21]. Moreover, sirolimus was
able to increase the Treg number after conversion from TAC in liver and
kidney transplant patients [22,112,113]. These data indicate that mTOR
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inhibitors can reverse the reduction of Tregs caused by other immuno-
suppressive agents. Also, combined use of everolimus and IL-2/IL-2ab
complexes makes it feasible to achieve highly effective antigen-driven
conversion of naive T cells into Tregs and expand these cells with high
purity in vivo [114]. Nevertheless, despite a higher number of Tregs
in peripheral blood, type 1 diabetes patients treated with IL-2 and
sirolimus were characterized by lower pancreatic β-cell function, when
compared to untreated controls [115]. However, this effect might be
related to the toxicity of sirolimus in the pancreas.

5. Other agents

5.1. Interleukin-2

Interleukin-2 (IL-2) is a cytokine produced by T helper cells that is
critical for signal transduction during immune response. It is critical
for the function of not only cytotoxic lymphocytes but also Tregs. Tregs
express high levels of the IL-2 receptor and IL-2 is essential for
peripheral tolerance mediated by them [116]. IL-2 deficient mice had
no or decreased numbers of FoxP3+ Treg cells [117]. Treatment with
anti-IL-2 antibody or IL-2 immunotoxin systemically also decreases the
absolute number of Tregs [118] (also see abovediscussionof IL-2 receptor
antibody). IL-2 therapy results in a higher percentage of CD4+FoxP3+

T cells in mice splenocytes; anti-CD25 can abrogate this effect in vivo
[119]. In theNODmice, IL-2 increases FoxP3 expression and the number
of Tregs in the periphery, in local lymph nodes, and in the pancreas
[118,120–122].

Similar results were found in clinical trials. IL-2 therapy increased
the numbers of Tregs in graft-versus-host disease and autoimmune
vasculitis, but did not affect the number of T effectors; thus, as a re-
sult, IL-2 increased the Treg/T effector ratio 4–5 times after therapy
[123,124]. Combined with Rapamycin, IL-2 transiently increased
both the number and frequency of nTregs in T1D patients. The num-
ber of FoxP3+ cells increased from day 0 to day 28 and fell back to
baseline on day 56, while the function was preserved [115]. Because
IL-2-dependent STAT5 phosphorylation occurs primarily in FoxP3+

regulatory T cells, Tregs receiving IL-2 signals proliferated and devel-
oped enhanced suppressive activity and could potentially be used to
prevent autoimmunity [125].

6. Conclusion

In conclusion,most of the immunomodulatory agents used in clinical
settings influence the function andnumber of Treg cells. Since Tregs play
a vital role in immune adjustment, it is very important to understand
the relationship between those agents and Tregs, especially in the clini-
cal application of novel cellular therapy involving adoptive Treg infu-
sion. Knowing the effects of those agents allows us to take advantage
and select agents, which enhance Treg action, maintaining at the same
time a graft immunoprotective environment. This enables us to plan
the number and frequency of Tregs applied in order to achieve clinical
effect [126]. In order to establish long-term tolerance, it would (most
likely) require use of not one agent but a few drugs in combination in
addition to ex vivo expanded Tregs. From this perspective, it seems that
today ATG as a T cell depletion agent in combination with mTOR inhib-
itors as maintenance and antiTNFα as supplemental compound should
be considered as the candidates with the most potential. Clinical trials
utilizing those agents in combination with Tregs are imminent.
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